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CONSIDERATION OF VARIABLE VISCOSITY IN THE DYNAMICS OF SOILS 

AND POROUS MULTICOMPONENT MEDIA 

G. M. Lyakhov UDC 624.131+539.215 

Analysis of tests indicates that the bulk viscosity of soils, rocks, ice, and snow 
is not a constant of the medium, but varies in the loading process. 

The model of a solid nonlinear viscoplastic multicomponent medium, intended to describe 
wave processes [i], is refined below by the introduction of variable bulk viscosity. It 
is assumed that the viscosity varies (increases) as the state of the medium shifts from 
a dynamic to a static bulk-compression diagram under load. With this approach, wave processes 
are described by a system of hyperbolic quasi-linear equations in partial derivatives, just 
as for constant viscosity. This makes it possible to solve a broad class of wave problems. 

I. Determination of Bulk Viscosity from Experimental Data. The variation in the bulk- 
viscosity coefficient qL as a function of the loading regime has been noted in many experi- 
mental studies. Lyakhov [2] indicates that the qL of a sandy soil increases by a factor of 
five as the rise time of the blast loading increases by a factor of three. In rocks [3], 
the viscosity increases by a factor of I0 as the duration of the load increases under the 
same stress level. At the same time, the viscosity decreases with increasing stress. For 
similar maximum stresses in loess and clayey soils, DL increases by several factors as the 
loading rate decreases [i, 4]. 

Let us examine the results of tests [5, 6] in which the spread velocity c and absorption 
decrement A of plane waves of different frequency f, created by a sinusoidal load in frozen 
soils and in ice, and from which it is possible to determine the viscosity, and the law 
governing its variation as a function of loading regime, were determined. 

The tests corresponded to small strains g ranging from 10 -7 to 5.10 -4 . In this region, 
the nonlinearity of the limiting compression diagrams and strain irreversibility can be 
neglected, and the model of a standard linear body can be used, if the viscosity is consid- 
ered constant. In the case of a uniaxial strain state, the equation of compression and 
unloading assumes the form 

ED ES = O, ( 1 . 1 )  

whe re  E D = cD=P0, and E s a r e  t h e  l i m i t i n g  dynamic  (when o + ~)  and s t a t i c  (when ~ § O) com- 

p r e s s i o n  m o d u l i ,  r e s p e c t i v e l y ,  ~ i s  a v i s c o s i t y  p a r a m e t e r ,  c D i s  t h e  wave v e l o c i t y  when f + 
~ ,  P0 i s  t h e  i n i t i a l  d e n s i t y  o f  t h e  medium, and o i s  t h e  s t r e s s  component  i n  t h e  d i r e c t i o n  
o f  wave p r o p a g a t i o n .  The f a c t o r  ~L i s  l i n k e d  t o  t h e  v i s c o s i t y  p a r a m e t e r  i n  t h e  f o l l o w i n g  
manner: 

NL = Es(ED -- Es)/ED~ = ED(? - -  1)/72~' ~ = E J E s "  ( 1 . 2 )  

During wave propagation, nonsteady oscillations, which convert gradually to steadyistate 
oscillations, develop in the medium. The extinction rate of the amplitude o of the steady- 
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state oscillations is determined by the absorption decrement 

A = ~c/2~/, = = In (s~_i/ai)/(r~ -- r~_1) (1.3) 

(i is the number of the point of the medium, c is the velocity of the steady-state oscilla- 
tions, and r is distance). 

In a standard linear body, A and u/2f are related by the equation [7] 

2-7 = ~ [? -- I -- V(~ -- I) 2 -- 167A2] �9 (1.4) 

Having determined A from experiment, it is then possible to find ~ for known X and f [7]. 

Experimental values of c and A for different frequencies, which correspond to the region 
of steady-state oscillations [5, 6] (E = c2P0 is the current compression modulus) are pre- 
sented in Table I. The characteristics of the media investigated are as follows: i) ice, 
P0 = 900-904 kg/m 3, temperature T = -4~ E D = 8.7.109 N/m 2, and ~ = 2; 2) ice, P0 = 770kg/m 3, 
T = -4~ E D = 6.1"109 N/m 2, and 7 = 2.5; 3) silty Alaska and Manchester soils, P0 = 1980 
kg/m 3, moisture content w ~ 0.14, T = -4~ E D = 18.5.109 N/m 2, and 7 = 7.5; 4) Ottawa sand, 
P0 = 2035 kg/m 3, w = 0.12, T = -4~ E D = 39-109 N/m 2, and 7 = 4.4; 5) silty soil, P0 = 
1950 kg/m 3, w = 0.2, T = -I~ E D = 8.4.109 N/m 2, and 7 = 6; 6) same soil, T = -10~ E D = 
24.109 N/m 2, and y = 2.5. 

In conformity with (1.4), ~ and NL, which are listed in Table I, are determined from 
the ~ and f values. It follows from these data that the viscosity parameter and the coef- 
ficient of viscosity of frozen soils and ice are not constants of their respective medium. 
Each f value has a corresponding value of ~ and NL" ~ decreases, and NL increases with de- 
creasing frequency. The variation in both values attains several orders of magnitude. The 
model of the standard-linear body msut be refined by the introduction of variable viscosity. 
The wave velocity and E = c2p0 vary with vibration frequency; this makes it possible to 
represent ~ and ~L as functions of E/E D. ~L = NL (E/ED) curves I-i0 are shown in Fig. 1 
(their numbers correspond to the media in Tables 1 and 2). 

TABLE 1 

[ I " sec)/m ~L" (N~ Medium | secC' m/ E.10 -9, N(m 2 a se ctt' i 

I 

], Hz 

0,t 2200 4,35 
t0 2300 4,7 

t000 2570 7,9 
5000 3000 8,1 

t0000 3080 8,6 
0,3 2050 3,t 

t 2100 3,3 
6 21t0 3,4 

0,t 1t00 2,5 
t t200 3,0 

t0 t800 6,7 
t000 2900 t6,5 
5000 2950 t7,2 

t0000 3000 t7,8 
0,t 2t50 9,4 

6 2300 t l  
t000 3900 3t 
5000 4t50 35 

10000 4200 37 

0,05 860 t,4 
t ,0 1060 2,2 

t0 t240 3,0 

0,05 2240 9,8 
t,0 2430 t l ,5 

t0 2730 14.5 

0,07 
0,03 
0,03 
0,02 
0,02 
0,04~ 
0,03 
0,03 
6,23 
0,22 
0,t3 
0,03 
0,02', 
0,02 
0,i7 
0,06 
0,(4! 
0,03 
0,02 

0,26 
0,t9 
0,t3 

0,09 
0,07 
0,04 

0,09 
3,8 
380 

1570 
1970 
0,18 
0,44 
2,7 
0,04 
0,26 
2,5 

44 
95 

380 
0,02 
1,3 
t40 
53O 
98O 

0,03 
0,5 
3,4 

0,04 
0,6 
3A 

2,2-10 TM 

I0 ~ 
5,6.10 0 
1,3. I0 e 
1,1.I0 ~ 
1,5.101~ 
1,2.101~ 
2,6.10 0 

5.101~ 
5,2. I0 ~ 

9. I0 s 
4,8. iO T 
2,2. t0 T 
5,5.10 s 
t,1.1011 
5,4.109 
4,8- tO T 
t , 3  - t 0  T 
7,4.10 ~ 

2,3- t01~ 
2,3. t0 ~ 
2,4-100 

t ,4 .1011 
9,6. t09 
t.7.10 a 
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TABLE 2 

Medium o .  I0 -~, 8 E/E m ~]L" 10-4, 
Nf(ra 2- see) ~ec -1 (N. see)/m 2 

7 

t0 

2 000 
8 t60 

13 900 
30 200 

7 040 
t3 800 
40 300 

4 300 
i8 300 
43 900 

2 500 
t5 000 
20 000 

0,034 
0,027 
0,02 
0,0t9 
0,052 
0,034 
0,020 
0,042 
0,03 
0,02t 
O,Oi 
0,006 
0,004 

0,34 
0,43 
0,58 
0,6i 
0,26 
0,39 
0,67 

0,26 
0,37 
0,53 
0,33 
0,55 
0.83 

630 
1700 
2200 
4500 
i300 
1600 
3000 

500 
2i00 
3400 
400 

1300 
2200 

2,3 
0,9 
0,7 
0,3 
0,7 
0,5 
0,2 
2,2 
0,5 
0,2 

9,2 
2,8 
i.6 

Using the experimental data, let us find qL at a positive temperature. Vovk et al. [4], 
and Rykov and Skobeev [8] compressed specimens in an impulse machine in a uniaxial strain 
state for loadings rate o that were different, but approximately constant in each test. 
The strains were measured under different stresses. The characteristics of the media investi- 
gated are presented in Table 2: 7) Kerchensk clay, P0 = 1850 kg/m 3, w = 0.23, E D = 8.6.107 
N/m 2, and y = 4.5; 8) Kerchensk clay, P0 = 1840 kg/m s, w = 0.15, E D = 7.5.107 N/m 2, and 

= 7.5; 9) clayey soil, P0 = 1830 kg/m 3, w = 0.13, E D = 9"107 N/m 2, and X = 7; i0) loess- 
like clayey soil, P0 = 1450 kg/m 3, w = 0.035, E D = 3.108 N/m 2, and 7 = 7; the data from 
media 7-9 correspond to [4], and the data from media 10 to [8] (the 7 values are approximate). 
The results of the tests - the 6 and E values - correspond to ~ = 10.105 N/m 2. 

The limiting compression diagrams of the medium can be assumed linear. From (i.i) 
i 

when o = const, we then have an equation, which when integrated for the initial condition 
(t = 0) E = 0, the stress-strain relationship 

e - - a l E  s ~ y + t  

I-- e - ~ / ~  ES~ 7 

can be determined. The value of p is determined from this equation. The resultant p and 
qL values are presented in Table 2. It is assumed that o/EE D = E/E D. 

Curves 7-10 in Fig. i correspond to the qL = qL(E/ED ) curve in unfrozen soils. Analysis 
of the experimental data indicate that the qL of the unfrozen soils is not a constant of the 
medium, qL increases with decreasing ratio o/EE D = E/ED; this corresPonds to a shift of the 
state of the medium from the dynamic to the static compression diagram in the o, E plane. 
qL is the ultimate value on the dynamic diagram. 

eL, 

10 ~- 

1 0  a - 

7 0  s _ 

10 4_ 

(N.sec)/,.  2 

A:\ 

i l 

$S E/ED 

Fig. i 
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The values of nL depend heavily on the properties of the medium- the gradation, porosity, 
moisture content, and temperature. In slightly moist loess-like clayey soil (medium i0), 
cementation of the mineral particles, which characterizes the strength properties of the 
soil, is greater than that in the more moist soils (media 7-10). This dictates the high 
values of E D and qL" 

Gradual freezing of pore water occurs with decreasing temperature; in this case, the 
strong bonds between the mineral particles increase, E D increases by several times, and qL 
by several orders of magnitude. E D increases by a factor of approxiemtely three, and OL 
by two and one half orders of magnitude when the temperature of the silty soil drops from 
-i to -10~ (media 5 and 6). UL is several orders of magnitude higher in the frozen soils 
and ice than in the unfrozen soils. 

The reduction in ~ occurs simultaneously with increasing E D, i.e., the difference be- 
tween the limiting dynamic and static compression moduli is reduced; this leads to a reduction 
in energy losses during wave propagation. The curve of qL versus E/E D in the loading process 
can be represented as 

~L = ~LD (E/ED) ~ ,  m > 1. ( 1 . 5 )  

Each value of E has its own value of qL" 

In this connection, it is proposed that model (i.i) of a standard linear body be re- 
fined by introducing variable viscosity, and that the compression'and unloading equation 
assume the form 

O [ ~ \ m ( r - - E s 8  E D ( Y - - I )  0 = E 
= 0 ,  o e--;- ( 1 . 6 )  

?'qZD 

Like (i.i), Eq. (1.6) applies to the region of small loads, when the limiting diagrams can 
be assumed linear. 

Values of qLD and m of the media investigated are presented in Table 3. The variation 
in qL during loading was considered previously in models of the media. Lyakhov [9] proposes 
a model for a liquid and saturated soil containing gas bubbles. It is assumed that during 
wave processes, the coefficient of viscosity increases on compression of the bubbles, i.e., 
with increasing deformation of the medium. 

In describing the behavior of the soils and ice [i0-12], qL is considered ~ increase 
with increasing loading time. Gold and Sinkha [ii] recormmend the following equations, which 
in our notations, assume the following form, in lieu of (i.i) to describe the behavior of 
ice: 

~ ~-- Es~ 0. 
8 ED t~t3 E8 

The tests indicate, however, that UL # 0 at the initial time. The description of the deforma- 
tion mechanism will apparently be more accurate, if qL is treated as a functional defined by 
the entire load history. In this case, difficulties arise with the derivation of material 
functions for the model and with computer-assisted solution of wave problems. 

The proposed accounting of variable viscosity (Eq. (1.6)) as a function of the ratio 
E/E D is approximate; it reflects, however, the basic laws of the variation in qL- 

TABLE 3 

Media ~LD" i0-5, 
(N. sec)/m 2 

l0 
i0 
54 
70 

i , i  

W% 

t4 
i3 
4,5 
6,5 
7,5 

Media 

I0 

~qLD" i0 -~, 
(N. sec)/m 2 

9 
0,02 
0,0t5 
0,0i3 
0,1 

i4 
2,3 
i,5 
2,0 
2,1 
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o 

Fig. 2 

2. Refinement of Model of Multicomponent Medium With Nonlinear Limiting Diagrams. 
In Lyakhov's model [i], it is assumed that the bulk deformation of multicomponent media - 
soils, ice, snow - is summed from the strain E I of the free pore space and the strains e2, 
Ea, and e 4 of the material of the liquid component, solid mineral particles, and ice, respec- 
tively: 

4 4 

= ~ =~, ~ ~ = I, 
i=I ~=I 

where e I , a 2, a 3, and ~ are the volumes of the free pore space, water, mineral particles, 
and ice in a unit volume of the medium, a 4 = 0 in unfrozen soils, and a 2 = 0 and a 3 = 0 
in ice and snow. 

The deformation e I, which is associated with the displacement and restacking of solid 
and liquid particles, does not take place instantaneously. This leads to a difference in 
the limiting dynamic and static bulk-compression diagrams of the free pore space. The dia- 
grams are approximated by the equations 

PoCk[. ~)--~S ~] when p-+0~ 
p - p0 = Is (~0 = WTs L~ + - 

+ t] + wh-n b '+  oo, k < 0 .  
P -- Po = l~ (~)  = -~s 

The equations for the compression of the material of the remaining components is independent 
of loading rate: 

PF~[. 1], i 3,4. p - -  po = / (~)  = - ~  L ~  + l)-v~ - ~ = 2, 

In conformity with these experimental data in the region of small stresses, where the 
limiting diagrams are linear, ~L can be assumed approximately constant along the lines 
O = E~. 

Let us assume that in the case of nonlinear limiting diagrams, the coefficient ~L is 
constant along the curves 

PoC~ I] x<o, l• (2.1) P - P~ = 77o [(~i + I )  -~s - + ~ i ,  

which fall between limiting diagrams. 
lar to (1.5): 

The variation in ~ corresponds to an equation simi- 

2 --m 

'q='W\--poC~+k ) " ( 2 . 2 )  

In Fig. 2, D and S are the limiting dynamic and static compression diagrams of the 
free pore space, i and 2 are lines of constant q, which are described by (2.1), and 3 and 
4 are diagrams that are realized with the passage of waves. The smallest qD and largest 
qS are attained on the dynamic and static diagrams, respectively: 

- poc~ + k 
~s = ~D 2 

- -  PoCS 
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It follows from (2.1) and (2.2) that 

L po4 +----~ -~o4+ 
~= ~]D _p----0c--~+-- ~ = ~lD _P0C~+ ~ U ( 2 . 3 )  

The equation of the bulk compressionof a medium [I] assumes the form 

# cz1~. (p, v)  
e = V:~ = q~(P' V ) P  n ~p(p,V), ( 2 . 4 )  

u 
where 

(p, v) = ~ [ ~ ] ~ ~ + 1] ; 
i = 2  P i c i  L P i  i 

X ( p , V ) =  \~-~-1 ~ - ,  ~p(p,V)=p--po--ls(ea); 

'2 
PoC s 

[(~ + 1) - ~  q;" l.(~O = i~(~O + k~; /s (~) = ~ 

e = (V - -  Vo)/Vo; P - -Po  = - - ( a t  -5 % + %)/3 

(q corresponds to (2.3)). qL is usually determined in tests. The coefficient q applies 
to the bulk strain of the free pore space, and UL to the longitudinal compression of the 
medium on the whole under a stress o r. In conformity with this, the relation between them 
can be written as 

3~] ko = ao/a~, k~ = a d a  ~. 
~L = % (l  + k o + k~)' 

In Lyakhov's model [i], it is assumed that the equations of component unloading conform 
to the equations of loading (2.4). Unloading of the free pore space occurs in accordance 
with the equation 

] [ ] 7 TM 
L po~ + t  + po~ +1 L Oo~--- ' 

It begins when [~11 attains the maximum value l~Iml when p = Pm" On these premises, the 
equation of ~ik unloading assumes the form of (2.4). The determining equations are: 

- t iJ , (P (P, V) = a, V~ , ~ +d-if!  --o.~,  -5 + 

IR('I) = - ~ - .  81 

(p,V)=kd % e~ dV81  a~ l+d--~(/ ' 

+ t - -  [ ~s ( P ~ -  Po) + t + - -  t - -  t . 
\ po4 k po4 

During unloading, q is considered constant, and its value corresponds to that achieved 
when ez = elm- If the point Pm - Po, elm lies beyond the static-compression diagram, 

q=~S" 

The Mises-Schleiker plasticity condition is used in the form 

~* (P - -  Po) S~  = c~ + p - -  Po. ( 2 . 5 )  
S ,  = i + ~,* (p - Po)/(P* - -  Po)' 

when p - P0 + 0, p - P0 = P* - P0, and p - P0 ~ ~, the lateral-pressure coefficient k o is 
(2 - k*)/2(k* + i), (2 + ke)/2(2k * + i), and i, respectively [13, 14]. 

In solving problems with cylindrical symmetry, it is assumed that 

a z = (% ~- %)/2. (2.6) 

The constants of the medium are determined experimentally. 
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Together with the basic equations of motion of a continuum, equations (2.4)-(2.6) form 
a closed system, which makes it possible to solve wave problems with plane, spherical, and 
cylindrical waves on a computer with allowance for variable viscosity by the same methods 
that are used for constant viscosity. 

Problems of wave propagation in a nonlinear multicomponent medium are solved in [13-15] 
for a constant viscosity in accordance with Lyakhov's model [i]. Calculations indicate 
that the maximum stress of a spherical blast wave when o r ~ 10-105 N/m 2 changes by 30-40% 
when the constant value of ~ is increased by a factor of 50. If a certain median value, 
which falls between ~S and ~D is adopted as the constant value of D, deviations from the 
calculations for a variable viscosity will apparently be of the same order. It should be 
noted that the effect of the variation in D on the parameters of a wave depends on its length, 
and on the mass of the charge in the case of a blast wave. This should manifest itself 
in deviations of wave parameters from laws of similitude. 
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